\(\int \frac {\sec ^3(e+f x)}{(a+b \sec ^2(e+f x))^2} \, dx\) [194]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 74 \[ \int \frac {\sec ^3(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^2} \, dx=\frac {\text {arctanh}\left (\frac {\sqrt {a} \sin (e+f x)}{\sqrt {a+b}}\right )}{2 \sqrt {a} (a+b)^{3/2} f}+\frac {\sin (e+f x)}{2 (a+b) f \left (a+b-a \sin ^2(e+f x)\right )} \]

[Out]

1/2*sin(f*x+e)/(a+b)/f/(a+b-a*sin(f*x+e)^2)+1/2*arctanh(sin(f*x+e)*a^(1/2)/(a+b)^(1/2))/(a+b)^(3/2)/f/a^(1/2)

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 74, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {4232, 205, 214} \[ \int \frac {\sec ^3(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^2} \, dx=\frac {\text {arctanh}\left (\frac {\sqrt {a} \sin (e+f x)}{\sqrt {a+b}}\right )}{2 \sqrt {a} f (a+b)^{3/2}}+\frac {\sin (e+f x)}{2 f (a+b) \left (-a \sin ^2(e+f x)+a+b\right )} \]

[In]

Int[Sec[e + f*x]^3/(a + b*Sec[e + f*x]^2)^2,x]

[Out]

ArcTanh[(Sqrt[a]*Sin[e + f*x])/Sqrt[a + b]]/(2*Sqrt[a]*(a + b)^(3/2)*f) + Sin[e + f*x]/(2*(a + b)*f*(a + b - a
*Sin[e + f*x]^2))

Rule 205

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-x)*((a + b*x^n)^(p + 1)/(a*n*(p + 1))), x] + Dist[(n*(p
 + 1) + 1)/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[p, -1] && (
IntegerQ[2*p] || (n == 2 && IntegerQ[4*p]) || (n == 2 && IntegerQ[3*p]) || Denominator[p + 1/n] < Denominator[
p])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 4232

Int[sec[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = Fr
eeFactors[Sin[e + f*x], x]}, Dist[ff/f, Subst[Int[ExpandToSum[b + a*(1 - ff^2*x^2)^(n/2), x]^p/(1 - ff^2*x^2)^
((m + n*p + 1)/2), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[(m - 1)/2] && IntegerQ[n
/2] && IntegerQ[p]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {1}{\left (a+b-a x^2\right )^2} \, dx,x,\sin (e+f x)\right )}{f} \\ & = \frac {\sin (e+f x)}{2 (a+b) f \left (a+b-a \sin ^2(e+f x)\right )}+\frac {\text {Subst}\left (\int \frac {1}{a+b-a x^2} \, dx,x,\sin (e+f x)\right )}{2 (a+b) f} \\ & = \frac {\text {arctanh}\left (\frac {\sqrt {a} \sin (e+f x)}{\sqrt {a+b}}\right )}{2 \sqrt {a} (a+b)^{3/2} f}+\frac {\sin (e+f x)}{2 (a+b) f \left (a+b-a \sin ^2(e+f x)\right )} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.36 (sec) , antiderivative size = 71, normalized size of antiderivative = 0.96 \[ \int \frac {\sec ^3(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^2} \, dx=\frac {\frac {\text {arctanh}\left (\frac {\sqrt {a} \sin (e+f x)}{\sqrt {a+b}}\right )}{\sqrt {a} (a+b)^{3/2}}+\frac {2 \sin (e+f x)}{(a+b) (a+2 b+a \cos (2 (e+f x)))}}{2 f} \]

[In]

Integrate[Sec[e + f*x]^3/(a + b*Sec[e + f*x]^2)^2,x]

[Out]

(ArcTanh[(Sqrt[a]*Sin[e + f*x])/Sqrt[a + b]]/(Sqrt[a]*(a + b)^(3/2)) + (2*Sin[e + f*x])/((a + b)*(a + 2*b + a*
Cos[2*(e + f*x)])))/(2*f)

Maple [A] (verified)

Time = 0.52 (sec) , antiderivative size = 68, normalized size of antiderivative = 0.92

method result size
derivativedivides \(\frac {-\frac {\sin \left (f x +e \right )}{2 \left (a +b \right ) \left (a \sin \left (f x +e \right )^{2}-a -b \right )}+\frac {\operatorname {arctanh}\left (\frac {a \sin \left (f x +e \right )}{\sqrt {a \left (a +b \right )}}\right )}{2 \left (a +b \right ) \sqrt {a \left (a +b \right )}}}{f}\) \(68\)
default \(\frac {-\frac {\sin \left (f x +e \right )}{2 \left (a +b \right ) \left (a \sin \left (f x +e \right )^{2}-a -b \right )}+\frac {\operatorname {arctanh}\left (\frac {a \sin \left (f x +e \right )}{\sqrt {a \left (a +b \right )}}\right )}{2 \left (a +b \right ) \sqrt {a \left (a +b \right )}}}{f}\) \(68\)
risch \(-\frac {i \left ({\mathrm e}^{3 i \left (f x +e \right )}-{\mathrm e}^{i \left (f x +e \right )}\right )}{f \left (a +b \right ) \left (a \,{\mathrm e}^{4 i \left (f x +e \right )}+2 a \,{\mathrm e}^{2 i \left (f x +e \right )}+4 b \,{\mathrm e}^{2 i \left (f x +e \right )}+a \right )}+\frac {\ln \left ({\mathrm e}^{2 i \left (f x +e \right )}+\frac {2 i \left (a +b \right ) {\mathrm e}^{i \left (f x +e \right )}}{\sqrt {a^{2}+a b}}-1\right )}{4 \sqrt {a^{2}+a b}\, \left (a +b \right ) f}-\frac {\ln \left ({\mathrm e}^{2 i \left (f x +e \right )}-\frac {2 i \left (a +b \right ) {\mathrm e}^{i \left (f x +e \right )}}{\sqrt {a^{2}+a b}}-1\right )}{4 \sqrt {a^{2}+a b}\, \left (a +b \right ) f}\) \(183\)

[In]

int(sec(f*x+e)^3/(a+b*sec(f*x+e)^2)^2,x,method=_RETURNVERBOSE)

[Out]

1/f*(-1/2*sin(f*x+e)/(a+b)/(a*sin(f*x+e)^2-a-b)+1/2/(a+b)/(a*(a+b))^(1/2)*arctanh(a*sin(f*x+e)/(a*(a+b))^(1/2)
))

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 262, normalized size of antiderivative = 3.54 \[ \int \frac {\sec ^3(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^2} \, dx=\left [\frac {{\left (a \cos \left (f x + e\right )^{2} + b\right )} \sqrt {a^{2} + a b} \log \left (-\frac {a \cos \left (f x + e\right )^{2} - 2 \, \sqrt {a^{2} + a b} \sin \left (f x + e\right ) - 2 \, a - b}{a \cos \left (f x + e\right )^{2} + b}\right ) + 2 \, {\left (a^{2} + a b\right )} \sin \left (f x + e\right )}{4 \, {\left ({\left (a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right )} f \cos \left (f x + e\right )^{2} + {\left (a^{3} b + 2 \, a^{2} b^{2} + a b^{3}\right )} f\right )}}, -\frac {{\left (a \cos \left (f x + e\right )^{2} + b\right )} \sqrt {-a^{2} - a b} \arctan \left (\frac {\sqrt {-a^{2} - a b} \sin \left (f x + e\right )}{a + b}\right ) - {\left (a^{2} + a b\right )} \sin \left (f x + e\right )}{2 \, {\left ({\left (a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right )} f \cos \left (f x + e\right )^{2} + {\left (a^{3} b + 2 \, a^{2} b^{2} + a b^{3}\right )} f\right )}}\right ] \]

[In]

integrate(sec(f*x+e)^3/(a+b*sec(f*x+e)^2)^2,x, algorithm="fricas")

[Out]

[1/4*((a*cos(f*x + e)^2 + b)*sqrt(a^2 + a*b)*log(-(a*cos(f*x + e)^2 - 2*sqrt(a^2 + a*b)*sin(f*x + e) - 2*a - b
)/(a*cos(f*x + e)^2 + b)) + 2*(a^2 + a*b)*sin(f*x + e))/((a^4 + 2*a^3*b + a^2*b^2)*f*cos(f*x + e)^2 + (a^3*b +
 2*a^2*b^2 + a*b^3)*f), -1/2*((a*cos(f*x + e)^2 + b)*sqrt(-a^2 - a*b)*arctan(sqrt(-a^2 - a*b)*sin(f*x + e)/(a
+ b)) - (a^2 + a*b)*sin(f*x + e))/((a^4 + 2*a^3*b + a^2*b^2)*f*cos(f*x + e)^2 + (a^3*b + 2*a^2*b^2 + a*b^3)*f)
]

Sympy [F]

\[ \int \frac {\sec ^3(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^2} \, dx=\int \frac {\sec ^{3}{\left (e + f x \right )}}{\left (a + b \sec ^{2}{\left (e + f x \right )}\right )^{2}}\, dx \]

[In]

integrate(sec(f*x+e)**3/(a+b*sec(f*x+e)**2)**2,x)

[Out]

Integral(sec(e + f*x)**3/(a + b*sec(e + f*x)**2)**2, x)

Maxima [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 98, normalized size of antiderivative = 1.32 \[ \int \frac {\sec ^3(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^2} \, dx=-\frac {\frac {2 \, \sin \left (f x + e\right )}{{\left (a^{2} + a b\right )} \sin \left (f x + e\right )^{2} - a^{2} - 2 \, a b - b^{2}} + \frac {\log \left (\frac {a \sin \left (f x + e\right ) - \sqrt {{\left (a + b\right )} a}}{a \sin \left (f x + e\right ) + \sqrt {{\left (a + b\right )} a}}\right )}{\sqrt {{\left (a + b\right )} a} {\left (a + b\right )}}}{4 \, f} \]

[In]

integrate(sec(f*x+e)^3/(a+b*sec(f*x+e)^2)^2,x, algorithm="maxima")

[Out]

-1/4*(2*sin(f*x + e)/((a^2 + a*b)*sin(f*x + e)^2 - a^2 - 2*a*b - b^2) + log((a*sin(f*x + e) - sqrt((a + b)*a))
/(a*sin(f*x + e) + sqrt((a + b)*a)))/(sqrt((a + b)*a)*(a + b)))/f

Giac [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 76, normalized size of antiderivative = 1.03 \[ \int \frac {\sec ^3(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^2} \, dx=-\frac {\frac {\arctan \left (\frac {a \sin \left (f x + e\right )}{\sqrt {-a^{2} - a b}}\right )}{\sqrt {-a^{2} - a b} {\left (a + b\right )}} + \frac {\sin \left (f x + e\right )}{{\left (a \sin \left (f x + e\right )^{2} - a - b\right )} {\left (a + b\right )}}}{2 \, f} \]

[In]

integrate(sec(f*x+e)^3/(a+b*sec(f*x+e)^2)^2,x, algorithm="giac")

[Out]

-1/2*(arctan(a*sin(f*x + e)/sqrt(-a^2 - a*b))/(sqrt(-a^2 - a*b)*(a + b)) + sin(f*x + e)/((a*sin(f*x + e)^2 - a
 - b)*(a + b)))/f

Mupad [B] (verification not implemented)

Time = 0.14 (sec) , antiderivative size = 62, normalized size of antiderivative = 0.84 \[ \int \frac {\sec ^3(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^2} \, dx=\frac {\sin \left (e+f\,x\right )}{2\,f\,\left (a+b\right )\,\left (-a\,{\sin \left (e+f\,x\right )}^2+a+b\right )}+\frac {\mathrm {atanh}\left (\frac {\sqrt {a}\,\sin \left (e+f\,x\right )}{\sqrt {a+b}}\right )}{2\,\sqrt {a}\,f\,{\left (a+b\right )}^{3/2}} \]

[In]

int(1/(cos(e + f*x)^3*(a + b/cos(e + f*x)^2)^2),x)

[Out]

sin(e + f*x)/(2*f*(a + b)*(a + b - a*sin(e + f*x)^2)) + atanh((a^(1/2)*sin(e + f*x))/(a + b)^(1/2))/(2*a^(1/2)
*f*(a + b)^(3/2))